

Project (Leader): Surya Sarat Chandra Congress Associate Research Scientist

Team: Hiramani Chimauriya, Nripojyoti Biswas, Doctoral Students

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Associate Director – Center for Infrastructure Renewal

Closed Meeting

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Fall 2020 Virtual Meeting

December 2, 2020

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

Introduction

Thermal Encapsulation using Geofoam

- Research Plan
- Test Setup
- Laboratory Testing Setups
- Demo Simulation

Given Setup Setup Work

Introduction

- □ Temperature fluctuations inside the dwellings typically occur from advection, diffusion and radiation at foundation superstructure joints
- □ About 15% of all heat loss in a home is through floors or basements
- Thermal Encapsulation using Geofoam
 - Research Plan
 - Laboratory Testing Setups

The stack effect

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

Thermal Encapsulation using Geofoam: Research Plan

- The category "Geofoam" includes polymeric and non-polymeric foams used in geotechnical applications.
- Expanded Polystyrene (EPS) is a rigid plastic geofoam.
- The coefficient of thermal conductivity of soil is approximately 20-40 times greater than that of EPS (Horvath, 1993)
- □ Thermal encapsulation performance will be studied in following scenarios:
 - Control Setup: Set a baseline response for given temperature conditions
 - Scenario 1 GBF: Test with Geofoam insulation placed Below Foundation slab
 - Scenario 2 GAF: Test with Geofoam insulation placed Around the Foundation slab

Thermal Encapsulation using Geofoam: Test Setup

- Box Size: 3'x3'x3'
- □ Slab Size: 1.5'x1.5'x4"
- Material
 - Wood
 - Backfill
 - Concrete Slab
 - Insulation Material: Geofoam

Thermal Encapsulation using Geofoam: Test Setup (Contd..)

Testing Conditions

- External insulation may be applied to all exposed sides of the box to reduce boundary effect
- Maintain uniform density and moisture conditions throughout the setup
- □ Temperature Monitoring: Thermocouples (TJ394-CASS-116U-6)
- Data Acquisition System (cDAQ-9184, NI-9213)
- Indoor Temperature Control: Space Heater/Cooler

Thermal Encapsulation using Geofoam: Laboratory Testing Setups

Material Characterization

Backfill material

- Passing No. 4 Sieve: 100%
- □ % Passing No. 200 Sieve: 80.7%
- Liquid Limit (LL): 39.4
- Plasticity Index (PI): 20.6
- Classification (USCS): Lean Clay (CL)
- Coefficient of Thermal Conductivity: (Under testing)

Thermal Encapsulation using Geofoam: Demo Simulation

COMSOL Input Parameters

Material	Density (kg/m ³)	Thermal Conductivity (W/m.K)			
Concrete Slab	2300	1.8			
Soil	2016	1.5			
Geofoam (EPS)	11.5	0.05			
Wood	500	0.22			

Future work

DMaterial Acquisition

□Build test setups

Performance Monitoring

DNumerical Simulation

□Small Scale Cost Benefit Analysis

LIFE FORMS

Project: Application of Geofoam in Thermal Encapsulation of Foundations Number: 1

Design and Testing of IFI Geosynthetic Products

Graduate Student: Md Ashrafuzzaman Khan

Team: Nripojyoti Biswas, Sayantan Chakraborty & Surya S.C. Congress

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Associate Director – Center for Infrastructure Renewal

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2020 Virtual Meeting

December, 2020

EXAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

Objectives

Part I

Performing repeated load tests on geosynthetic reinforced base layers built on different weak subgrades and then use the test data to calibrate parameters that can be used with Giroud and Han (G&H) designs

Part II

Developing various design charts and methods for IFI, Inc Geosynthetic Products based on the results and calibration studies from Part I

IFI geocells and fabgrids (composite geogrid-geotextile layers) will be considered for proposed tests

Literature

The mechanisms by which geosynthetics provide reinforcement include the following:

(i) restraint of lateral movement of base,(ii) increase in modulus of base aggregate(iii) improved vertical stress distribution(iv) reduced strain along the top of the subgrade

Rutting life (Nd) from the following equation

 $N_d = f_4 \, (\varepsilon_v)^{-f_5}$

Here,

 ε_v is vertical compressive strain on subgrade (B) f_4 and f_5 are the constants

Test Plan for Large-scale Tests

Table 2: Large-Scale Cyclic Plate Load Testing PlanNote: UR- Unreinforced; GC- Geocell; FG- Fabgrid

Testing Sequence	Test Designation	Geosynthetic type	Subgrade Soil: CBR value	Number of tests	
1	Unreinforced (Control)	-	1&3	2	
2	GC	Geocell (2 types)	1 & 3	4	
3	FG	Fabgrid (5 types)	1&3	10	
4	FG:GC (1 Configuration)	Geocell + Fabgrid	1&3	2	
	18				

FabGrid[™] is a next generation composite <u>https://ind-fab.com/geogrids/</u>

Test Plan for Material Characterizations

Subgrade Characterization

Subgrade Characterization

Table: CBR for Subgrade					
Test No.	MC (%)	CBR			
1	5.0	10			
2 a*	9.2	3			
2b	10.0	2.6			
3a*	12.5	1.0			
3b	15.0	0.9			

LIFE FORMS

Project: Design and Testing of IFI Geosynthetic Products Number: 2

Performance of pavement sections with H₂Ri geosynthetics Graduate Student: Nripojyoti Biswas

Team member: Md Ashrafuzzaman Khan, Sayantan Chakraborty, and Surya Sarat Chandra Congress

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Associate Director – Center for Infrastructure Renewal

Texas Department of Transportation

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2020 Virtual Meeting

December 02, 2020

TEXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

Introduction

* Objective

□ To address the feasibility/efficiency of H₂Ri geosynthetic drainage and strengthening layer to improve the performance of pavement sections built on high-PI soil

Single wicking geotextile layer - serves various functions

□ Drainage through capillary action

- **Reinforcement**
- □ Separation

Figure-TenCate, Inc.

Task Plan

✤Task 1:

□ Construction and instrumentation of pavement test sections at FM 1807, Venus, TX - Completed

Task 2:

□ Monitor performance of test sections → For 2.5 years

Compare with control section

* Task 3:

□ Laboratory study and numerical validation - Ongoing

✤ Task 4:

Design and construction guidelines

□ Life Cycle Cost Analysis (LCCA)

Project Location and Section Details

Pavement Performance

Zone of influence extends to about 12 in. near crown and more than 12 in. near shoulder

Automated Plate Load Testing (APLT)

Permanent deformation δ_p at the end of first step 1 (100 cycles) at end of Step 4 at each test location

Resilient Modulus

similar

Laboratory Setup

Objective: To understand the moisture movements in subsoil due to the placement of H₂Ri in a control environment

Laboratory setup for big box testing – Construction

Frame Construction

Panel Cutting

Drainage Pipes

SAA sensors

SAA Cover

Edge Glue

Water Sealant

Proposed Model

After Construction

LIFE FORMS

Project: Performance of pavement sections with H2Ri geosynthetics Number: 3

H

ASSOCIATES

llerracon

Mitigating Sulfate Heaving Using Novel Admixtures

Project Leader: Sayantan Chakraborty

Team: Nripojyoti Biswas and Jungyeon Jang

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Associate Director – Center for Infrastructure Renewal

> NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Fall 2020 Virtual Meeting

EXAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

Dec 2, 2020

Research Need: Mitigating Sulfate Heaving Using Novel Admixtures

Problem

o Sulfate heaving has a detrimental impact on overlying infrastructure

Objective

o Study alternate sustainable co-additives for stabilizing sulfate-rich soils

Co-additive studied

- o Crystalline silica admixture
 - Quarry fines
 - High surface area \rightarrow facilitate pozzolanic reaction
 - Suppress ettringite-induced heaving

Source: Reed, R.F., 2005. Alternative E., Innetion of "Lime-Induced Heave". In *PanAm Unsaturated Soils 2017* (pp. 118-130).

Research Plan: Mitigating Sulfate Heaving Using Novel Admixtures

Evaluate improvements in engineering properties

o Free swell, unconfined compressive strength, and resilient modulus tests

Mineralogical and microstructural analyses

- $\circ\,$ Identify chemical reaction products in treated soils
- \circ XRD, FESEM, and DSC

Sustainability and resiliency studies

- o Resource consumption, environmental impact, and socio-economic impact
- o Resilience of infrastructure to withstand normal and extreme events

XRD – X-Ray Diffraction
FESEM – Field Emission Scanning Electron Microscopy
DSC – Differential Scanning Calorimetry

Test Results: Free Swell Strain

L-HS

L-HS-15CS

L-HS-30CS

Lime Treated

Test Results: Unconfined Compressive Strength

Test Results: Unconfined Compressive Strength

After Moisture Conditioning

Test Results: Resilient Modulus

Sequence number 5 (AASHTO T 307) Confining pressure = 41.4 kPa; Maximum axial stress = 68.9 kPa Contact axial stress = 6.9 kPa; Cyclic axial stress = 62.0 kPa

Elapsed Time (seconds)

(c)

0 1 2 3 4 5 6 7 8 9 10

[^]90 91 92 93 94 95 96 97 98 99 100

$$M_r = k_1 P_a \left(\frac{\theta}{P_a}\right)^{k_2} \left[\left(\frac{\tau_{oct}}{P_a}\right) + 1 \right]^{k_3}$$

Where, M_r = resilient modulus; k_1 , k_2 and k_3 = model constants; θ = bulk stress; P_a = atmospheric pressure; and τ_{oct} = octahedral shear stress

Curing period	<i>k</i> 1		<i>k</i> ₂		<i>k</i> 3		R ²	
(days)	L-HS	L-HS-30CS	L-HS	L-HS-30CS	L-HS	L-HS-30CS	L-HS	L-HS-30CS
0	1473	1449	0.128	0.175	0.161	0.358	0.90	0.94
3	1676	1684	0.131	0.171	0.233	0.383	0.97	0.96
7	1877	1920	0.169	0.138	0.310	0.413	0.94	0.93
14	2002	2136	0.127	0.169	0.499	0.505	0.91	0.91
28	2049	2147	0.151	0.152	0.562	0.797	0.90	0.93

Lime + Crystalline silica → Resilient modulus↑
Curing time ↑ → Pozzolanic reaction ↑ → M_r ↑

Future Studies

- Mineralogical and microstructural analyses
- Optimize stabilizer dosages
- Sustainability and resiliency studies

LIFE FORMS

Project: Mitigating Sulfate Heaving Using Novel Admixtures Number: 4

