

Evaluating the Performance of Fiber-Based Concrete Mixes for Various Applications

Project Leader: Surya Sarat Chandra Congress **Team:** Krishneswar Ramineni, Clay Caldwell

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Interim Director – Center for Infrastructure Renewal

TAMU Site Proprietary

May 11th, 2022

EXAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

Presentation Outline

- Introduction
- Progress of Work
- Laboratory Testing
- Results
 - □ Absorption
 - **Drying**
- Preliminary Findings
- Future Work

Introduction

- $\boldsymbol{\textbf{*}}$ Climate change and rising seawater levels \rightarrow huge concerns for coastal areas
- $\boldsymbol{\textbf{*}}$ Increase in intensity of storm surges \rightarrow coastal areas are vulnerable
 - **Coastal flooding**
 - □ Shoreline erosion
 - □ Water pollution
 - □ High salinity of coastal waters
- Objective

□To develop optimized fiber-based concrete mixes to address the erosion-

related coastal infrastructure problems caused due to climate change

Progress of Work

Task List

- Characterization of materials
- Wetting and Drying studies

□ Control (Potable water and 20°C)

□ Temperature Controlled (40°C and 4°C)

Seawater

Large-scale laboratory studies

Laboratory Testing

Concrete mix proportion

Percentage	60%	50%	40%	30%	control
Proportions	1:3:3:10.5	1:3:3:7	1:3:3:4.67	1:3:3:3	1:3:3:0
Cement (g)	86.3	107.8	129.4	151.0	215.7
Sand (g)	322.1	402.6	483.0	563.6	805.2
Pea Gravel (g)	296.2	370.3	444.2	518.4	740.6
Fiber (g)	135.9	113.2	90.6	67.9	0

*Note - A:B:C:D = Cement: Fine aggregate: Coarse aggregate: Fibers

Concrete mix constituents

Concrete mixes during wetting and drying cycles

Concrete mixes after wetting and drying cycles

Water absorption vs time for cycle 5

Water absorption vs time for mix 1:3:3:10.5

❖ Fiber dosage $\uparrow \rightarrow$ Water Absorption \uparrow ❖ The water absorption after 2 days is constant in all the fiber mixes

Drying vs time for cycle 5

Drying vs time for mix 1:3:3:10.5

❖ Fiber dosage ↑→ Weight change due to drying ↑
❖ The weight change due to drying after 5 days is negligible

Preliminary Findings

Fiber mixes undergone higher absorption and drying compared to control mix

□ Concrete mix 1:3:3:10.5 – Highest

Absorption and drying cycles – Remained constant

□ Water absorption – After 2 days

Drying – After 5 days

The cumulative weight change from one cycle to the next cycle is within ± 10%

✤ Both water absorption and drying ↑ with fiber content ↑

Future Work

- Wetting and Drying studies at 40°C and 4°C
- Wetting and Drying studies using seawater composition

Project: Evaluating the Performance of Fiber-Based Concrete Mixes for Various Applications

Number: 5

Application of Geofoam in Infrastructure Application of Geofoam in Thermal Encapsulation of Foundations

Project (Leader): Surya Sarat Chandra Congress Senior Research Engineer

Team: Hiramani Chimauriya, Nripojyoti Biswas, Clay Caldwell, Anil Akhil **PI:** Anand J. Puppala Professor | A.P. and Florence Wiley Chair Interim Director – Center for Infrastructure Renewal

Closed Meeting

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2022 Virtual Meeting

May 11th, 2022

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

□ Introduction

- Test Methodology
- **Control Test (Baseline)**
- GBF-8 in. R-250
- GBF vs Control
- Numerical Simulation: Control Test
- **Conclusions**
- **Given Works**

Introduction

- □ Temperature fluctuations inside the dwellings typically occur from advection, diffusion and radiation at foundation superstructure joints
- □ About 15% of all heat loss in a home is through floors or basements
- □ Thermal Encapsulation using Geofoam
 - Research Plan
 - Laboratory Testing Setups

The stack effect

Control Test (Baseline)

- Test Box Boundary
- Concrete Slab

 \bigcirc

 \bigcirc

Geofoam

GBF-8 in. R-250

- Out-of-plane Thermocouple
 - In-plane Thermocouple
 - Test Box Boundary
- Concrete Slab

Geofoam

 \bigcirc

GBF vs Control

GBF vs Control

Numerical Simulation: Control Test

Zachry Department of Civil & Environmental Engineering

Conclusions

- □ Temperature variation with depth Temperature Zones
 - 2° Celsius Control test
 - Less than 1° Celsius GBF
- □ Temperature dropped with time
 - GBF (T-7,T-1,T-0) was warmer compared to control test
- Numerical simulation of control test
 - Good match with the test results
 - Indicates major heat loss of the slab is to the ambient air

Future Works

□ Continue lab tests for other combinations of geofoam grade,

thicknesses and arrangements

Numerical Simulation

LIFE FORMS

Project: Application of Geofoam in Thermal Encapsulation of Foundations Number: 6

Design and Testing of IFI Geosynthetic Products

Team: Md Ashrafuzzaman Khan,

Nripojyoti Biswas, Krishneswar Ramineni, and Surya S.C. Congress

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Interim Director – Center for Infrastructure Renewal

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2022 Virtual Meeting

May 11, 2022

EXAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Background and Objectives

Background

Problematic subgrades – Millions of infrastructure damages

□ HDPE geosynthetic products may provide sustainable and economic solution

□There is a lack of knowledge about their performance under control environment

Objective

method

Performing repeated load tests on geosynthetic reinforced base layers built on different weak subgrades in a large-scale laboratory setup to calibrate design parameters based on Giroud-Han (G-H)

FabGrid[™] is a next generation composite <u>https://ind-fab.com/geogrids/</u>

Large-scale repeated load test section (Base = 12 inch; Subgrade = 18 inch)

Progress of Work

Task List

□Characterization of subgrade material

□Characterization of base material

□Construction of large-scale test section

□Large-scale repeated load testing results for CBR = 1

Large-scale repeated load testing results for CBR = 3

Calibration for high-strength geogrids

Test Results

□ Permanent deformation decreased with higher CBR value of subgrade soil

Permanent deformation decreased with an increase in stiffness of geogrid

Reduction in permanent □ Strength of various geogrids: BL5 < BL6 < FG6 < BL7 deformation 20 20 Permanent Deformation (mm) Permanent Deformation (mm) 16 16 12 12 8 CBR=1 CBR=3 UR UR BL5 BL5 BL6 BL6 BL7 BL7 FG6 FG6 0 0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 0 0 Number of load cycles, N Number of load cycles, N

Calibration of G-H Method

- G-H method is based on the laboratory test results available for low-strength geogrids (j < 0.40)
- Current research is focused on high strength geogrids (j > 0.7)
- □ The proposed reinforcement factor, λ , needs to be calibrated for the high strength geogrids

Product ID	Aperture stability m-N/deg.		
BL 5	0.80		
BL6	0.98		
BL7	1.50		
FG6 (FAB)	0.98		

Geogrid Apertutre Stability Modulus, *j* (m-N/^o)

Calibration of G-H Method Continued...

- \Box λ values depend on stress distribution angle
- Inclusion of geocell reduced the stresses at the interface between base and subgrade

$$\frac{1}{\tan\alpha} = \frac{1}{\tan\alpha_1} + \lambda^* \log N$$

 α = stress distribution angle for the case where the number of passes is *N*;

 α_1 = stress distribution angle for the case where the number of passes is one

----- stress distribution angle, α ----- stress distribution angle, α_1

LIFE FORMS

Project: Design and Testing of IFI Geosynthetic Products Number: 7

Performance of pavement sections with H₂Ri geosynthetics

Project Leader: Nripojyoti Biswas

Team members: Md Ashrafuzzaman Khan, and Surya Sarat Chandra Congress

> **PI:** Anand J. Puppala Professor | A.P. and Florence Wiley Chair

Interim Director – Center for Infrastructure Renewal

Closed Meeting

Texas Department of Transportation

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2022 Virtual Meeting

May 11, 2022

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

- Introduction
- Task Plan
- Laboratory setup:
 - **Control Section**
 - □ Reinforced and Two-way drainage
 - □ Reinforced and One-way drainage
- Life Cycle Analysis

Introduction

* Objective

Evaluate the feasibility/efficiency of using H₂Ri geosynthetic for improving drainage and strength of pavement sections built on highplastic expansive soil

- Field Studies indicated efficacy of application
- Laboratory studies
 - **Control Section**
 - **Reinforced Sections**

Reinforced Section

Task Plan

Laboratory setup – Control Section

Laboratory setup – Reinforced and Two-way drainage

Laboratory setup – Reinforced and One-way drainage

Life Cycle Analysis

Combined Assessment Framework (Das 2018)

LIFE FORMS

Project: Performance of pavement sections with H₂**Ri geosynthetics Number: 8**

