

Evaluating the Performance of Fiber-Based Concrete Mixes for Various Applications

Project Leader: Surya Sarat Chandra Congress **Team:** Krishneswar Ramineni, Clay Caldwell

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Interim Director – Center for Infrastructure Renewal

TAMU Site Proprietary

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Fall 2022 Meeting

December 5-6, 2022

XAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

Presentation Outline

- Introduction
- Objectives
- Progress of Work
- Laboratory Testing
- ✤ Results
- Observations
- Future Work

Introduction

- ✤ Climate change and rising seawater levels → huge concerns for coastal areas
- ❖ Increase in intensity of storm surges → coastal areas are vulnerable
 □ Coastal flooding
 □ Water pollution

□ Shoreline erosion

A neighborhood in Port Arthur, Texas, flooded by Hurricane Harvey in 2017*^a

□ High salinity of coastal waters

Floods from Hurricane Ian, Naples, Florida, USA September 2022*^b

*Source: SC National Guard a , City of Naples FL Police Department b

Introduction

- Sandbags are used as barriers to control the destructive behavior of flooding
- Limitations of the current methods
 - □ Handling and logistical issues
 - □ Long-term performance of sandbags
 - **Limited resources**

Typical schematic of sandbagging method*

Objective

□ To develop optimized fiber-based concrete mixes to address the flooding and erosion-related coastal infrastructure problems caused due to climate change

Progress of Work

Task List

- Characterization of materials
- Wetting and Drying studies
 - □ Potable water (20°C)
 - □ Seawater (20°C)
 - □ Varied conditions (40°C and 4°C)
- Permeability studies
- Laboratory-scale large box studies

Laboratory Testing Concrete mix proportion

Percentage	60%	50%	40%	30%	control
Proportions	1:3:3:10.5	1:3:3:7	1:3:3:4.67	1:3:3:3	1:3:3:0
Cement (g)	86.3	107.8	129.4	151.0	215.7
Sand (g)	322.1	402.6	483.0	563.6	805.2
Pea Gravel (g)	296.2	370.3	444.2	518.4	740.6
Fiber (g)	135.9	113.2	90.6	67.9	0

*Note - Proportions A:B:C:D = Cement: Fine aggregate: Coarse aggregate: Fibers

Concrete mix constituents

Concrete mixes during wetting and drying cycles

Concrete mixes after five wetting and drying cycles at 20 C

Results - 20°C-50RH-SW

Water absorption vs time for cycle 5

Water absorption vs time for mix 1:3:3:10.5

- **\Rightarrow** Fiber dosage $\uparrow \rightarrow$ Water Absorption \uparrow
- Water absorption after 2 days is constant in all the fiber mixes

Results - 20°C-50RH-SW

◆ Fiber dosage ↑→ Weight change due to drying ↑
 ◆ Weight change from drying beyond 8 days is negligible

Results - 40°C-20RH-PW

***** Fiber dosage $\uparrow \rightarrow$ Water Absorption \uparrow

***** Water absorption after 2 days is constant in all the fiber mixes

Results - 40°C-20RH-PW

Weight change from drying beyond 4 days is negligible

Results - 4°C-40RH-PW

10

\Rightarrow Fiber dosage $\uparrow \rightarrow$ Water Absorption \uparrow

The water absorption after 2 days is constant in all the fiber mixes

Results - 4°C-40RH-PW

The weight change due to drying after 50 days is negligible

- Temperature and relative humidity have influence
- **\Rightarrow** Saltwater environment \rightarrow slightly more water retention than portable water
- Environment: 40°C high absorption and desorption

Observations

 Fiber mixes experienced higher water absorption and desorption (A & D) compared to control mixture

□ Control mix - 1:3:3:0 – Lowest A & D in all testing environments

□ Fiber mix - 1:3:3:10.5 – Highest A & D in all testing environments

- Percent fiber in mixes increases water absorption and desorption
- Time required for concrete mixes to attain equilibrium in both A & D

	20°C-50RH- SW	20°C-50RH-PW	40°C-20RH-PW	4°C-40RH-PW
Absorption	2 days	2 days	2 days	2 days
Desorption	8 days	5 days	4 days	50 days

Future Work

- Permeability studies on optimized mix
- Large scale laboratory testing

Project: Evaluating the Performance of Fiber-Based Concrete Mixes for Various Applications

Number: 5

Project (Leader): Hiramani R. Chimauriya

Team: Surya S C Congress, Clay Caldwell, Nripojyoti Biswas PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Interim Director – Center for Infrastructure Renewal

Closed Meeting

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Fall 2022 Meeting

December 5-6, 2022

XAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

Introduction

- Test Methodology
- **Control Test (Baseline)**
- Geofoam Below Footing (GBF) Tests
 - GBF 8-in. Test
 - GBF 2-in. and 4-in. Tests
- **Depth-wise Temperature Profile**
- **Conclusion**
- **Given Setup Work**

Introduction

- □ Temperature fluctuations inside the dwellings typically occur from advection, diffusion and radiation at foundation superstructure joints
- □ About 15% of all heat loss in a home is through floors or basements
- □ Thermal Encapsulation using Geofoam
 - Research Plan
 - Laboratory Testing Setups

The stack effect

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

*GBF: Geofoam Below Foundation GAF: Geofoam Around Foundation

Control Test (Baseline)

Environmental Engineering

GBF 8-in. Test

GBF 2-in. and 4-in. Tests

Similar trend as 8-in. test observed

 Indoor and slab temperatures for both 2-in. and 4-in. tests are cooler than 8-in. test and closer to control

Geofoam-soil interface not significantly warmer than indoor for 2-in. test

Depth-wise Temperature Profile

- Soil temperature remains almost constant after a certain depth (i.e., a cooler "transient" layer of soil exists)
- Thickness of transient layer is influenced by the presence/ thickness of geofoam
- Heat transfer between soil and slab significantly impeded in this layer, leading to cooler soil temperature (i.e., less heat lost from slab)
- Increased geofoam thickness = Less heat lost to soil

Conclusions

 \Box Wide variation(>2°C) in indoor and slab temperature without insulation

- Geofoam insulation reduced this variation in all cases, leading to smaller difference in temperatures and thus lower energy losses
- □8-in. thick geofoam showed best performance with less than 1°C difference between indoor and slab temperature
- Increased thickness of cooler transient layer with geofoam thickness suggests disruption of heat transfer between soil and slab is a function of geofoam thickness.

Future Works

□Continue lab tests for GAF configuration

□Numerical Simulation of GBF and GAF Tests

LIFE FORMS

Project: Application of Geofoam in Thermal Encapsulation of Foundations Number: 6

Design and Testing of IFI Geosynthetic Products

Team members: Md Ashrafuzzaman Khan, Krishneswar Ramineni and Clay Caldwell

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Director – Center for Infrastructure Renewal

Closed Meeting

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Fall 2022 Meeting

December 5-6, 2022

XAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Outline of the Presentation

- Background
- Objectives and Tasks
- Working Methodology
- Material Characterization
- □ Large Scale Box Testing
- Results
- □ Summary

Large-scale Testing Set up (6' x 6' x 2.5')

Background

 \Box Existing G-H method is valid up to *j* = 0.8

- □ The G-H method was based on the experimental study with CBR = 4; however, the design charts were developed within CBR = 1 to CBR = 3
- Need to update the calibration equation and develop design charts to facilitate the flexible pavement design with geocell

Product ID	Aperture stability m-N/deg.
BL 5	0.80
BL6	0.98
BL7	1.50
FG6 (FAB)	0.98

Objective and Tasks

Research Objective (Part I): Calibrate the existing G-H method for new IFI products

Tasks involved in Part I:

- Material characterization
- Conducting large-scale repeated load tests
- Calibration of G-H method

Research Objective (Part II): Development of various design charts and methods

Tasks involved in Part II:

- Design methods for reinforced unpaved road
- Design methods for reinforced paved road (modified AASHTO)

Working Methodology

Material Characterizations

Large-scale Box Testing Testing Plan

Table : Large-Scale Cyclic Plate Load Testing PlanNote: UR- Unreinforced; GG- Geogrid; GC- Geocell; FG- Fabgrid

Testing Sequence	Test Designation	Geosynthetic type	Subgrade Soil: CBR value	Number of tests as per plan	Remarks
1	Unreinforced (Control)	-	1 & 3	2	Completed (4 additional)
2a	FG	Fabgrid (FG6)	1 & 3	2	Completed
2b	GG	Geogrid (BL5, BL6, BL7)	1 & 3	6	Completed
3 a	GC	Geocell (4 in.)	1 & 3	2	CBR=1 completed, CBR = 3 completed
3b	GC	Geocell (6 in.)	1 & 3	2	CBR=1 completed, CBR = 3 completed
4 a	GG:GC	Geocell (4 in.) + BL6	1 & 3	2	CBR=1 completed, CBR = 3 completed
4b	GG:GC	Geocell (6 in.) + BL6	1 & 3	2	CBR=1 completed, CBR = 3 completed
	Total	number of testing:		18	

Large-scale Box Testing Testing Parameters

- Reinforcement were placed at the interface of base and subgrade layer
- Main objective of the repeated load testing was to determine the load distribution angles with the number of loading cycles

$$h = \frac{r}{\tan \alpha} \left(\sqrt{\frac{P}{\pi r^2 p_i}} - 1 \right)$$

 p_i = normal stress at the interface of base and subgrade layer (kPa) P = wheel load (KN) r = radius of the equivalent tire contact area (m) h = thickness of the base layer (m) α = stress distribution angle

$$\frac{1}{\tan\alpha} = \frac{1}{\tan\alpha_1} + \lambda^* \log N$$

 α = stress distribution angle for the case where the number of passes is *N*;

 α_1 = stress distribution angle for the case where the number of passes is one

----- stress distribution angle, α ----- stress distribution angle, α_1

□ Aperture stability modulus of geogrids: BL5 < BL6 < BL7

□ Maximum permanent deformation (PD) after 5000 cycles: BL5 > BL6 > BL7

PD of (BL6 + Geotextile) < FG6 \rightarrow interaction with aggregates

Results Geocell (CBR = 1)

\Box Permanent deformation (PD) with Geocell \rightarrow reduction up to 4 times

□ 3D Geocell vs 2D geogrids \rightarrow 2.6 times reduction

 \Box PD of (3D Geocell + 2D geogrids) vs 3D Geocell \rightarrow 5-10 % reduction

Results Stress distribution angle CBR = 1

Vertical stress on subgrade reduced with geosynthetic reinforcement
 Maximum vertical stress after 5000 cycles: BL5 > BL6 > BL7
 Vertical stress values were used to determine stress distribution angles

Results Updated Design Parameters (geogrids only)

 \Box Stress distribution angle (α) showed the improvement with geogrids

 $\Box \alpha$ decreases with the number of loading cycles

 \Box New calibration equation is under development including λ and k functions

Results Design Chart (under progress)

Summary

□Geosynthetic reduced the vertical stress on subgrade by 20 to 50%

□ Vertical stress distribution angle after 5000 cycles: UR < GG < GC < GG+GC

□For very soft soil, geogrid reinforced section reduced the permanent deformation (PD) by 1.5 to 2.0 times

Geocell reinforced section reduced the PD by 3 to 4 times

□Inclusion of geogrid with geocell decreased the PD by only 5-10%

G-H equation has been updated to include stiffer geogrids

Design charts are now under development

Future Scope

Deed to validate the laboratory results with field study

Currently collecting data from field- LWD, DCP, and VE-DCP

Construction site in Louisiana, having very soft Subgrade. Geocell and Geogrids were used to enhance the foundation capacity

Project: Design and Testing of IFI Geosynthetic Products Number: 7

Performance of pavement sections with H₂Ri geosynthetics

Project Leader: Nripojyoti Biswas

Team members: Md Ashrafuzzaman Khan and Krishneswar Ramineni PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Director – Center for Infrastructure Renewal

December 5-6, 2022

XAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

- Introduction
- Task Plan
- Field Test Sections
- Falling-Weight Deflectometer Test & Results
- Life Cycle Analysis
 - Sustainability Analysis
- Conclusions
- Future works in other projects

Introduction

* Objective

Evaluate the feasibility/efficiency of using H₂Ri geosynthetic for improving drainage and strength of pavement sections built on highplastic expansive soil

- Field Studies indicated efficacy of application
- Laboratory studies
 - **Control Section**
 - **Reinforced Sections**

Reinforced Section

Task Plan

Falling Weight Deflectometer (FWD) Test

TS-1	15 in. Reclaimed Asphalt Pavement (RAP) base + 2 in. Asphalt Concrete (AC) layer + H ₂ Ri geotextile
TS-2	15 in. Flex Base (FB) + 2 in. AC layer + H ₂ Ri geotextile
CS	13 in. FB + 4 in. AC layer

Falling-Weight Deflectometer Test Results

The performance indicators selected in this study were Base Layer Index (BLI), Lower Layer Index (LLI) and AREA₇₂

$$BLI = D_0 - D_{12}$$

$$LLI = D_{24} - D_{36}$$

$$AREA_{72} = 6\left(1 + 2\frac{D_{12}}{D_0} + 2\frac{D_{24}}{D_0} + 2\frac{D_{36}}{D_0} + 2\frac{D_{48}}{D_0} + 2\frac{D_{60}}{D_0} + \frac{D_{72}}{D_0}\right)$$
Note:
$$D_0 = \text{Deflection sensor at 0 in.}$$

$$D_{12} = \text{Deflection sensor at 12 in.}$$

$$D_{24} = \text{Deflection sensor at 24 in.}$$

$$D_{48} = \text{Deflection sensor at 36 in.}$$

$$D_{48} = \text{Deflection sensor at 60 in.}$$

$$D_{48} = \text{Deflection sensor at 72 in.}$$
Flexible pavement deflection bowl

Effect of Subgrade

Falling-Weight Deflectometer Test Results

Continu	Ctation		<i>BLI</i> (μm)			<i>LLI</i> (μm)		<i>AREA</i> ₇₂ (in.)			
Section	Station	2020	2021	2022	2020	2021	2022	2020	2021	2022	
	1	135.6	171.7	194.1	53.0	50.0	53.8	26.2	23.9	23.6	C
	2	165.9	195.1	194.3	48.3	46.7	51.6	24.7	23.1	23.7	
	3	160.1	181.1	189.4	48.5	48.5	52.2	24.6	23.3	23.9	
TS-1	4	162.2	190.2	172.0	46.2	45.5	54.7	24.5	23.0	24.5	
	5	150.7	185.7	228.6	45.7	47.2	71.0	25.0	23.2	22.8	
	6	139.4	182.4	246.8	47.1	47.2	67.9	25.6	23.0	22.1	
	7	180.7	230.1	248.5	58.9	56.9	78.4	23.9	21.8	22.2	
	1	197.9	258.1	247.9	66.5	56.4	73.3	23.5	21.1	22.5	
	2	206.2	256.3	249.7	70.5	62.2	63.1	23.1	21.2	22.0	
TC-2	3	202.3	248.7	275.0	73.4	58.4	61.2	23.7	21.6	20.9	
13-2	4	191.3	230.9	220.9	63.4	53.1	69.2	23.7	21.9	23.0	
	5	231.0	264.4	245.1	62.0	51.3	59.3	22.0	20.5	22.1	1
	6	208.4	215.4	207.3	90.7	57.4	56.3	23.1	22.4	22.6	
	1	138.7	222.8	222.9	49.9	37.6	50.9	24.7	20.4	21.7	
	2	133.9	207.5	216.7	41.0	36.1	48.9	24.4	20.6	21.5	
	3	125.1	201.2	176.0	39.6	38.9	49.4	24.6	21.3	23.6	
CS	4	105.5	185.9	161.4	42.3	51.3	57.7	27.2	22.5	24.7	
	5	105.0	197.4	176.9	43.2	45.5	57.7	27.3	21.9	23.9	
	6	126.7	187.2	163.6	45.7	41.7	52.5	25.7	22.4	24.6	
	7	117.7	223.3	202.1	43.6	45.2	56.0	26.3	21.0	22.9	

Sound Condition BLI < 200 μm LLI < 50 μm **Moderate Condition** 200 μm < BLI < 400 μm 50 μm < LLI < 100 μm

RAP with wicking geotextile performing better than traditional flex-base material with wicking fibers

Falling-Weight Deflectometer Test Results

Back calculated In-situ modulus and rut-life

- ♦ Moduli values of subgrade layers (all sections) ≈ 15 – 20 ksi
- ✤ Moduli values of base layers (RAP) ≈ 45 ksi
- ✤ Moduli values of base layers (FB) ≈ 25 ksi

✤ Rut-life

RAP > FB or Control

Life Cycle Analysis

Combined Assessment Framework (Das 2018)

Sustainability Analysis – Test Parameters

 $I_{Rec} = w_{1a} \times E_{E \ (material \ production)} + w_{1b} \times E_{E \ (Transportation)}$ $I_{Env} = w_2 \times GW_P$ $I_{SoEc} = w_3 \times C$ Where, $w_i = Weight \ factors$ $E_E = Embodied \ Energy$ $GW_P = Global \ Warming \ Potential$ $C = Cost \ of \ the \ process$

Test ID	Α	В
Section ID	TS-1	Control
Section Parameters	15 in. RAP + 2 in. AC	13 in. FB + 4 in. AC
	+ H ₂ Ri gtx	
Section Length	130 ft.	130 ft.
Section Width	15 ft.	15 ft.

Sustainability Analysis – Database for Analysis

Database for Calculation

Material	Unit we	eight	Embodied energy (production) (MJ/kg)	GWP (kg eqCO ₂ /kg)	Cost (USD)		Transportation (miles)	Embodied energy (transportat ion) MJ/metric ton-km
RAP	122	pcf	0.074	0	\$9.5	per ton	0	
FB	135	pcf	0.083	0.0052	\$12.6	per ton	20	
GTX	1.2	kg/m²	77.7	2.37	\$4900	15'x300' roll	100	1.5
AC	145	pcf	5	0.086	\$17	per ton	20	

Sustainability Analysis – Embodied Energy

 $I_{Rec} = w_{1a} \times E_{E (material production)} + w_{1b} \times E_{E (Transportation)}$

Resource Category	Embodied Energy (MJ)		Consump E	otion of E nergy (%	Weighted Resource Use		
	Α	В	Α	В	Weights	Α	В
Production	298842.0	224446.5	57.1	42.9	0.5	28.6	21.4
Transportation	2823.6	18213.0	13.4	86.6	0.5	6.7	43.3
					I _{Rec}	35.3	64.7

RAP with wicking geotextile has lower Embodied Energy as compared to traditional section

Sustainability Analysis – Environmental Impact

 $I_{Env} = w_2 \times GW_P$

Environmental Impact Category	Emission Category Contribution		Contribution to Emission Category (%)			Weighted Environmental Impact	
	Α	В	Α	В	Weights	Α	В
Global warming potential: kgCO ₂ e	7383.7	5158.8	58.9	41.1	1.0	58.9	41.1
					I _{Env}	58.9	41.1

RAP with wicking geotextile has higher kg eq. of CO₂ emission as compared to traditional section

Sustainability Analysis – Socio-Economic Impact

 $I_{SoEc} = w_3 \times C$

Socio- economic Impact Category	Cost C Contri	ategory ibution	Contı C	ribution ategory	Weighted Environmental Impact		
	Α	В	Α	В	Weights	Α	В
Cost of Treatment: USD	3927.5	2595.0	60.2	39.8	1.0	60.2	39.8
					I _{SoEc}	60.2	39.8

RAP with wicking geotextile has higher cost of implementation as compared to traditional section

Sustainability Analysis

$I_{SUS} = W_1 \times I_{Env} + W_2$	$\times I_{SoEc} + W_3$	× I _{Rec}			
Section ID	Α	B	Weights	Α	В
	(1)	(2)	(3)	(4)=(3)*(1)	(5)=(3)*(2)
Resource consumption index, <i>I_{Rec}</i>	35.3	64.7	0.3	11.6	21.4
Environmental impact, <i>I_{Env}</i>	58.9	41.1	0.3	19.4	13.6
Socio-economic index, I _{SoEc}	60.2	39.8	0.3	19.9	13.1
		Sustainability index	I _{sus}	50.9	48.1

RAP with wicking geotextile is marginally less sustainable as compared to traditional section

Conclusions

- Falling-weight deflectometer studies indicate that RAP+H₂Ri section performance is comparable to Control Section
- This corroborates results from APLT tests and in-situ monitoring results (Dec 2021 meeting)
- Senefits of application of the novel studies were verified using laboratory studies (May 2022 meeting)
- Sustainability assessment indicates GHG emissions during production of geotextile and cost of geotextile are major factors affecting sustainability benefits of the project
- Future benefits could be realized with the inclusion of Resiliency Function

Future Works in Other Projects

Field Construction

Length of the section- 250'

Installation of Wicking geotextile at the interface of subgrade and subbase

Slide Courtesy: Dr. Bora Cetin, MSU

Field Construction

Trenches at the shoulder

Slide Courtesy: Dr. Bora Cetin, MSU

Field Construction

Sensor Installation

Slide Courtesy: Dr. Bora Cetin, MSU

LIFE FORMS

Project: Performance of pavement sections with H₂Ri geosynthetics Number: 8

