fl; iz Application of Geofoam in
Thermal Encapsulation of Foundations

Project Leader: Hiramani R. Chimauriya

Team: Clay Caldwell, Nripojyoti Biswas, Gustavo
Hernandez Martin

Pl: Anand J. Puppala
Professor | A.P. and Florence Wiley Chair

Director — Center for Infrastructure Renewal

Closed Meetin
X TAMU Site Proprietary
NSF IUCRC CICI TAMU SITE

NSF IUCRC CICI - IAB Spring 2024 Meeting
ﬁ T TEXAS A&M UNIVERSITY
1 May 23, 2024 7.\ M Zachry Department of Civil &
THERMAFOAM LLC .

Environmental Engineering



Presentation Qutline
J Introduction

d Test Methodology
d Previous GBF & GAF Tests

d R-130 Geofoam Around Footing (GAF) Tests

= GAF-2in. R-130 Test
* Indoor Temperature: Control vs GAF
= Slab Temperature: Control vs GAF

d Results Summary

d Conclusions

AII TEXAS A&M UNIVERSITY

Zachry Department of Civil &
e ————— —— Environmental Engineering



Introduction

1 Temperature fluctuations inside the dwellings typically occur from
advection, diffusion and radiation at foundation superstructure joints

d About 15% of all heat loss in a home is through floors or basements
d Thermal Encapsulation using Geofoam
= Research Plan
= | aboratory

Testing Setups

Heat loss

The stack effect

TEXAS A&M UNIVERSITY
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Test Methodology

—)

Control Tests (Baseline)

Initial ”

b 4 Setup

*GBF Geofoam-R-250
(8, 4, and 2 in. thick)

 *GAF Geofoam-R-250 | MCgN:_SOL f
(8, 4, and 2 in. thick) odeling o
Laboratory
| ¥ ) Tests
GAF-8 in. Geofoam-R-130

¥

*GBF: Geofoam Below Foundation Al TEXAS A&M UNIVERSITY

. Zachry Department of Civil &
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Previous GBF & GAF Tests

AGAF configurations significant 3

outperform all GBF tests
JGAF sections >8 C warmer

Initial Condition (~21°C)

20

e — —
ale- — -

u |
- |
indoor temperature than GBF [ = gl = | i
sections and >10°Cwarmer & 'C & «~ Tt = X ¢
] - n - ! oaE f .
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QNot much difference in = UL B A S
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GAF-2 in. R-130 Test
dSignificantly warmer
Indoor temperature

compared to control T 0
test (>5°C) warmer T
Qincreased e
temperature e =
observed within the . o £
slab and TO "
superstructure — i
reduced heat loss o o

1Side walls — coldest
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Indoor Air Temperature: Control vs GAF

dSimilar trend of reduced heat
loss observed in all 4 GAF tests
JLower R-values led to cooler 60
iIndoor temperatures .
AR-250 sections > 1.5°C warmer ¢
than R-130 section E 0
Q2 in. thick R-130 geofoam may £ *
be least efficient GAF = 2

configuration
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Slab Temperature: Control vs GAF

Al GAF sections > 10 "C
warmer slab temperature than
Control

JdLower R-values led to cooler
slab temperatures

8 in. R-250 sections > 2 "C
warmer than 8 in. R-130 section

a2 in. R-250 sections >6 C
warmer than 2 in. R-130 section

30

20

Temperature (°C)
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Results Summary

LUGAF-2 in. R-250 section had 0T
>4" C warmer slab temperature Initial Condition (21°C)
than GAF-2 in. R-130 section 200 7 T T T T T
dGAF-8 in. R-250 section had o o
>2°C warmer slab temperature & 10 = v r oy
than GAF-8in.R-130 secton ¢ [ =| ™ ooy
: v
QGAF-8in. R-250 sectionhad 2 °C | . . . T .
>2°C warmer slab temperature % TN T ® El ®
than GAF-8 in. R-130 section & -10F : 2 2 = 2
O O & & &)
20
- Ambient Condition (~ -18°C)
300




Conclusions

Better performance of GAF =» Heat lost to ambient air controlling factor

dThinner insulation with higher R-value performed better than thicker
insulation with lower R-value

JGAF-2 in. thick R-250 outperformed GAF-8 in. thick R-130

dThermal properties and insulation configuration had more influence than
thickness of geofoam

dinfluence of insulation thickness was higher for lower grade geofoams
2 in. thick R-250 in GAF configuration could be an efficient option

AII TEXAS A&M UNIVERSITY

Zachry Department of Civil &
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Introduction and Background

1 Pavements built over poor subgrade soils — low
bearing capacity, distress and construction
Issues

d Geosynthetics — Improve pavement
performance — High modulus geogrids can<
work on weak subgrades

O Limitations of existing design method (G-H
method)

» Applicable only to geogrids with aperture stability
modulus , j below 0.8 m-N/deg (experimental values
used in the development are less than this value!)

» Assumes the initial stress distribution of first cycle as
constant
1 Need to update the calibration equation and

develop design charts
AN

\\QC\?\\\\\\\\\@@_\
WY \
\‘\f\\.\\\\\\\ \

-1.0

-3.0

-4.0

—2— 6 1n. base —@— 10 1n. base
—o— 8 in. base —¢— 12 in. base
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0 04 08 12 1.6 2

Aperture stability modulus, j
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Slope vs Aperture stability modulus graph
based on G-H equation
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Objectives

The objectives of the current study are:

dPhase 1 Part 1 Objective | : Performing repeated load tests on geosynthetic
reinforced base layers built on different weak subgrades ( 12-inch base sections)

JPhase 1 Part 2 Objective Il: Development of various design charts and methods for
IFI, Inc Geosynthetic Products based on Phase 1 Part 1 results

dPhase 1 Part 3 Objective lll.: Perform non-destructive tests on geosynthetic
reinforced unpaved sections and develop numerical model to determine the
stiffness properties of different pavement layers in the field.

dPhase 2 Part 1 Objective |IV: Performing repeated load tests on geogrid reinforced
base layers built on different weak subgrades ( 6-inch base sections)

dPhase 2 Part 2 Objective V: Development of various design charts and coefficients
for IFI, Inc Geosynthetics products based on Phase 1 Part 1 and Phase 2 Part 1

results

T TEXAS A&M UNIVERSITY
A Zachry Department of Civil &
Environmental Engineering



Experimental Program

2000 — 53378
. H ) ‘ — Load Pluse | |
Large-Scale Repeated Load Testing e e
k 2 ‘ {40,000
) | T A S PV T
Hydraulic actuator = | | | | <
= \ | \ - ?g
S 4000 | | | 120,000
el \ \ \ 1
| ‘Rest Period‘ :
N 0.5 1
oL . S .o
0 1 2 3
Ia—] - - FE Reference Elapsed time (sec)
—LVDTs beam Repeated load pulse
Load cell
12 in.@plate; i " /SEefggrlzreSS“fe | A Frequency of loading: 0.77 Hz
= O Peak load: 9000 Ibf

U Loading plate diameter: 12 in.
O Instrumentation: Load cell, pressure
sensors, Multiple LVDTs

' 71

Note: All dimensions are in in. (1 in. = 25.4 mm)

TEXAS A&M UNIVERSITY
Zachry Department of Civil &

AlM
\ Environmental Engineering

Schematic of the large-scale test box




Experimental Program

Large-Scale Repeated Load Testing

BTrye—=y |@
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Experimental Program

Large-Scale Repeated Load Tests Performed on Geocell/Geocomposites

Test ID (h) | (CBRy,) Geosynthetic type Geosynthetic material property
12 1 FG6 Geocomposite (FG6) J = 0.80 m-N/deg + Non-woven
12 1 GCSP4 Geocell (GCSP4) 4 in. height
12 1 GCSP6 CBR 1 Geocell (GCSP6) 6 in. height
12 1 BL6 GCSP4 Geogrid (BL6) + Geocell (GCSP4) | j=0.98 m-N/deg + 4 in. height
12 1 BL6 GCSP6 12, Geogrid (BL6) + Geocell (GCSP6) | j=0.98 m-N/deg + 6 in. height
12 3 FG6 Geocomposite (FG6) J = 0.80 m-N/deg + Non-woven
12 3 GCSP4 Geocell (GC4) 4 in. height
12 3 GCSP6 CBR 3 Geocell (GC6) 6 in. height
12 3 BL6 GCSP4 Geogrid (BL6) + Geocell (GCSP4) | j=0.98 m-N/deg + 4 in. height
12 3 BL6 GCSP6 Geogrid (BL6) + Geocell (GCSP6) | j=0.98 m-N/deg + 6 in. height

“Test ID” nomenclature: “Base thickness_CBR of Subgrade_Primary Reinforcement

type_Secondary Reinforcement type”

T TEXAS A&M UNIVERSITY

Zachry Department of Civil &
Environmental Engineering




Experimental Program

Large-Scale Repeated Load Testing on Geogrid Reinforcements

6 in.

CBR 1

Test ID h CBR,, Geosynthetic type Geosynthetic material property

12 1 UR - -

12_ 1 BL5 CBR 1 Geogrid (BL5) Jj=0.80 m-N/deg
12_1 BL6 Geogrid (BL6) j=0.98 m-N/deg
12_1 _BL7 12in Geogrid (BL7) J=1.50 m-N/deg
12_3 UR - -

12_3 BL5 CBR 3 Geogrid (BL5) Jj=0.80 m-N/deg
12_3 BL6 Geogrid (BL6) Jj=0.98 m-N/deg
12 3 BL7 Geogrid (BL7 = 1.50 m-N/deg

Geogrid (BL6)

/=0.98 m-N/deg

Geogrid (BL7)

J=1.50 m-N/deg

CBR 3

Geogrid (BL6)

J=0.98 m-N/deg

Geogrid (BL7)

J=1.50 m-N/deg

“Test ID” nomenclature: “Base thickness CBR of Subgrade_Primary
Reinforcement type_Secondary Reinforcement type”

Zachry Department of Civil &
Environmental Engineering

TEXAS A&M UNIVERSITY
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Surface Deformation:

dPermanent deformation | =
subgrade strength', base

Test Results

and Trends

80%.
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N
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o 6.3 BL7 1

Permanent deformation (in.)

thickness [ and geogrid stiffness jI N Bt =11 =in | 20 It
-o-6_ 1 UR v g
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. . . [ —~- 6_1_BLY i e ]
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. i S 100(- 1 2 2 100§ S
geosynthetic reinforcement /W A
dThe key influencing factors: I R—E. 017000 2000 3,000 4000 5000

Geogrid stiffness (j), Subgrade
strength (CBR,,), r/h ratio
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Unpaved Base Layer Design — Theory
P
Stress at interface, Pi = 7 (r + I tana)’ F Actuator

1 P
X
tan a r2p;

h = —1|Xr

Load cell

Stress on subgrade should be less than mobilized
bearing capacity

pi < mNgcy
Earth pressure cell
1 p
h= tana | | (i) {1 — 0.9exp [_ (1)2]} Noc i Bkl BT Initial stress distribution angle, a
\ fs ' h e Subsequent stress distribution angle, a;,

Where, P = vehicular load applied, r = the loading plate of radius, h = the thickness of the base layer, a = stress
distribution angle, m = bearing capacity mobilization coefficient, N, = bearing capacity factor; ¢, = undrained

ohesion of the subgrade soil (kPa), f, = factor equal to 75 mm rut depth and s= rut depth (mm)

O\

Zachry Department of Civil &
Environmental Engineering
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Unpaved Base Layer Design - Theory

Geogrid-reinforced unpaved roads

Stress distribution angle (a) — 1
_ _ _ = k+4Xlog,,N
improvement with geogrids — generate tan (o)
1/tan(a) vs. log,,N graphs ; . N - o000
dintercept is £ and Slope is 4 Y—_—
| Unreinforced ]
dGiroud and Han (2004b, 2004a) Method 2| SeCt'O”\’ e -
— a depends on ; _ \ f
> Ratio of loading plate radius to base layer el SR:CIELOrrced ;
thickness (r/h) S R S
1 2 3 4
» Types of geosynthetics ()) Log /N

» Number of loading cycles (N)

TEXAS A&M UNIVERSITY

» Parameter k is a constant value of 1.1 AlM  Zachry Department of Civil &

r = Radius of the plate, h = Base thickness, N = Number of loading cycle, j = Aperture stability modulus i Environmental Engineering




Unpaved Base Layer Design — Theory

CBRsg=1,h CBRsg=3,h=6in.

Geogrid-reinforced #+———— e
d d i E 6_1_UR R 6_1_BL6 N 6_1_BL7| ] i [© 63 UR . 63BL6 o 63 BLJ|
unpaved roads f I
p . - tan(e) = 0.928 +0.232 x Log N
2 1/tan(a) = 0.956 + 0.342 x Log, N 1_ 2F R2=0. N
Hyq t tant @ | . o I P oot
IS NOT CONStan = RA=094 Reached fallure criteria of 1% ltan(@)=0.607+0.118 x Log. N __--g©7°
= _ tA—>3 in. permanent deformation 15 10 -0 -0 ©0E00
g Y _ L+t A ) 7§ If\ RZZO.O?‘)’,@—’O/O’
-l - Ao |- o _ -1~ _
DThe SlOpe Of the I;ZF‘I/ ’ ,5”‘0’/6/60&\< T ii—‘:" :T_A_~—-A—~A—A&A—A—AA—AMA"——A—AﬂﬁA—AMA
- | k- _
l\? - l/tan(“):o‘“j *00'92675 xLog, )N 1 \% e r--%--ee O_I/tan(a)% 10,029 x Log<><>1<\>fo<>
. - R<=0. ]
O" 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 0 1 1 1 1 I 1 1 1 1 I 1 1 _095 1 1 1 1
line decreases 1 ! : ) ol 1 ; ; y
. . LoglON LOglON
» Geogrid stiffness CBRsg=1,h=12in. CBRsg=3,h=12in.
. 3 T T T T [ T T T T [ T T T T [ T T T T 3 T T T T [ T T T T [ T T T T [ T T T T
(I)I I Man(%) =1.504 +0.254 x Log, ;N ] I o 123 UR w 123 BL5 4 12 3 BL6 o 12 3 BL7
| R2 =099 000 i . i
> SUb rade 5[ 1an(®)=1.244 +0.178 x Log ¥ /,,,6”0’43 : o .
— _0o - — L —
g 3 1 r_o‘gg”’//()/ e 13 T 1/tan(ot) = 1.010 + 0.089 x Log. N I
\-/I-\ - - - ,’L'__~""_ 3 _AAA < tan(o) = + XOg]O
= 14 - o -m- Ty E [fan(®)=0.869 +0.077 x Log, N
Strength (CBRSQ)IS I|::Z:::::Z—~’~—_A—— “ B 5 S l, R2=0.97 10 _____T_Ii_og%_o o-00
:1 ______ PR - = —— -~ - o - O 1)600 31‘4____#4—&--*"6':{ _____ 5 - @ - @ B8
\ {/ltan() = 1.187 + 0.119 % Log, .N 1tan(e) = 0.978 + 0.062 x Log N - | =i S S oo am o amass
T R2=0.99 R2 =0.99 - ------- <*$‘**‘°*+ ”””” ¢ meme e
I | o 121 UR w 121 BL5 4 121 BL6 o 12_1_BL7| : I 1/tan(a) = 0.794 + 0.051 xLog N 1/tan(®) = 0.588 + 0.010 x Log ‘N
O 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | 0 L L L ,R2|:098 L L L | L L L L R%:0|95 L L L |
0 1 2 3 4 0 1 2 3 4
Log , N Logio V
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Unpaved Base Layer Design

Base Thickness | Subgrade CBR | Reinforcement Type A k RZ )
1 Unreinforced - - i,
1 BL6 0.342 0.956 0.94
1 BL7 0.275 0.439 0.96
3 Unreinforced 0.232 0.928 0.95
6in. 3 BL6 0.118 0.607 0.99
3 BL7 0.029 0.413 0.96
1 Unreinforced 0.254 1.504 0.99
1 BL5 0.178 1.244 0.99
1 BL6 0.119 1.187 0.99
12in. 1 .BL7 0.062 0.978 0.99
3 Unreinforced 0.089 1.010 0.93
3 BL5 0.077 0.869 0.97
3 BL6 0.051 0.794 0.98
3 BL7 0.010 0.588 _0.95

AII TEXAS A&M UNIVERSITY

Zachry Department of Civil &
Environmental Engineering



Unpaved Base Layer Desig

Q Effect of different : |
. . 1.6 1.6[ o 6 1 BL6 » 12 1 BL5
variable on deS|gn : = 63 BL6 < 121 BL7
= = L A~ 121 BL6 v 12 1 UR
parameters, (kand 1) |3 " 27 « 123 BL6 + 61 BL7
> Effect of & 50.8 50.8: : g_g gi; : g_g_ﬁg
ecto = = £ 123 UR
04FL
% k| = Geogridj{ :
+ & = moduiiratio Re | I I N
> Effectof A

% Al = Geogrid j1
2 A1 = moduli ratio R

* Al= mn ratiofl

Slope (1)

k=1(E} E, )
A=1(E, E, nh))

] N ¢ ] N

I | I . | T 11 1 I 11 I 11 I | I . | T 175 11 I 111 I 11 I | I -
1.6 2.0 . . 0.8 12 1.6 . . . 40 60 8.0
Aperture stability modulus (j) r/h ratio Moduli ratio (R )

L —— S, TEXAS A&M UNIVERSITY

r = radius of the plate, h = base thickness, E; = Modulus of base, E, = Modulus of subgrade, j = aperture stability modulus

Zachry Department of Civil &
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Unpaved Base Layer Design

. : . . 3.0 —
1 The coefficients for & and A obtained from performing multiple . Proposed k Equation
variable regression modeling on the TAMU laboratory test : | e cteany
results £
k =0.67¢(—042x)) (g, 1043, R2= .76 : R2-076
= 101 o
£ o
2 =0.07e(Z0-71) (R )11 (3 /h) 145, R2 = 0.95 Y |
00 10 20 30
. Experimental values of &
 Generalized form of the 1/tan(a) by substituting & and A o Proposed A Equation
. ~ 0.  — Line of equit N
parameters is 3 " -
203 : 1
A R2 = 0.95
— a: [0.678(_0'42X/)(RE)0'43] + 0.078(_0'71X])(RE)l'l(T/h)1'45X l0g10 (]V) % 0_2:_ i N
£ 0.1f_ - N
()b...D.|....|....|....|....:

0.
00 01 02 03 04 05
Experimental values of 4

TEXAS A&M UNIVERSITY

Zachry Department of Civil &
r = radius of the plate, h = base thickness, E, = Modulus of base, E, = Modulus of subgrade, j = aperture stability modulus Environmental Engineering



Unpaved Base Layer Design

Proposed Design Equation

( )
_ _ 1.45 P
0.67 e~42J (Rp)%43 + (0.07 e=0714) (%) (Rg)' logye(N) D)
hlab = < > -1 > Xr
{1+ 0204 [R; — 1} (%) {1 — 0.9 exp [— (3) ]}Nccu
N P J

» G-H method developed a laboratory to field calibration factor based on field tests conducted by

Hammitt (1970). The average value of the field calibration factor (f_,) is 0.69

hfield = hlab X 0.69

2 )
| _ 1.45 P
0.46 e~042J (R)043 4 (0.048 6_0'71]) (%) (Rg)** log1o(N) (mr?)

hfiela = {1+0.204 [Rg — 1]} RE o) N
. E (—) {1 — 0.9 exp [— (_) ]}Nccu
7. h
8 J
Note: Further validation with full-scale field testing on high stiffness geogrids of IFl may yield different calibration "y Dparimentof i

factor. AWM  Zachry Department of Civil &

R | e e— ' Environmental Engineering




Proposed Design Charts

1 Design charts shows base thickness for a range of subgrade strength (CBR,)
and for different loading cycles for different geogrids with different j properties

Design Charts

1 A minimum base thickness of 6 in. is recommended when the design equation in

the chart yields thickness lower

1.0 T T T T
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_____ N =5000 | =
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P=40kN  |{200 &
CBR =15 i 2
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—10.0 &
AR TR W RO S N TR W R | 0.0
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Limitations

 The current proposed design method’s validity is limited to the assumptions made
and the testing conditions followed in the research

» Proposed design methodology validity is constrained to testing variables:

/

** R values ranging between 2.6 to 6.9

/

s CBR values of subgrade soils within the range of 1 and 3

/

+» Biaxial geogrids with j values ranging from 0.8 m-N/deg to 1.5 m-N/deg

» Developed equation — for stiff subgrade yields lower design base thickness, < 6 in. —
Recommend a minimum thickness of 6 in. for practical considerations and insights from the
laboratory data.

» An average field calibration factor of 0.69 (from previous design methods) was followed

» Future field studies on high strength materials may yield different field calibration factors

Zachry Department of Civil &
Environmental Engineering

AII TEXAS A&M UNIVERSITY




Summary

Current laboratory studies showed the addition of geosynthetics significantly
enhances the performance of the unpaved section sections constructed on weak

subgrades.

dG-H equation has been updated to include stiffer geogrids and the proposed method

is recommend for geogrids with j values ranging from 0.8 m-N/deg to 1.5 m-N/deg

Design charts were developed for IFI geosynthetic products

AII TEXAS A&M UNIVERSITY

Zachry Department of Civil &
Environmental Engineering



Future Works

UField testing and long-term performance of the high modulus geogrids

dFor paved layer coefficients, we recommend large box test on 3-layered system with

upper layer simulating asphalt concrete

AII TEXAS A&M UNIVERSITY

Zachry Department of Civil &
Environmental Engineering
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Introduction

“* Objective
d Evaluate the feasibility/efficiency of using H,Ri geosynthetic for

improving drainage and strength of pavement sections built on high-
plastic expansive soil

*» Field Studies indicated efficacy of application
“* Laboratory studies )
 Control Section
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Life Cycle Analysis

Combined Assessment Framework (Das 2018)

Socio-Economic Resource Consumption
Impact Index (/s,z.) Index (/gec)
Resilience Index (/gs)

Environmental Impact
Index (/¢,,,)

*W = Weights
YW =1

Lower value
indicates better
alternative

‘Isus =Wxlg,, + W, % Ig c. + W3 % I, ‘

‘IQ = W xlgys + Wg % Iges ‘




Life Cycle Analysis Outline

*+ Boundary condition is considered as cradle to gate + transportation to site
* Construction machinery costs and impacts are ignored

** The database costs are market costs for the products

* Cost and Impact analysis was done per meter length of road

*» Sustainability analysis for environmental impact was performed using
OpenLCA

** ReCiPe 2016 Midpoint method was used for calculation




Process Flow
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Sustainability Analysis — Test Parameters

I Rec = W1a X E E (material production) T Wip X E E (Transportation)

Where
I = X GW ’
Eny = W2 d w; = Weight factors
Igop = W3 XC E- = Embodied Energy

GW,= Global Warming Potential
C = Cost of the process

Test ID __A | B __ __C_

TS-1 TS-2 Control
Section Parameters 15in.RAP+2in. 15in.FB+2in. 13in.FB+4
AC + H,Ri gtx AC + H,Ri gtx in. AC
Section Length 3.3 m 3.3 m 3.3 m
Section Width 15 ft. 15 ft. 15 ft.

&
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Field Test Sections — FM1807 Venus, Texas
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Field Test (In-situ Observations)

» Section A & B shows no surface distresses except for some cracks on
shoulders.

*» Section C has some visible distresses on the outer wheel path.

Section A Section B Section C




Falling Weight Deflectometer Tests — February 2024

Drop Weight at each Station (Ibf)
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Falling Weight Deflectometer Tests - Results

Deformation for sensors (D1-D7) Remaining Rut-Life
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Schematic of Large Box Setup
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Schematic of Large Box Setup
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Box Construction

*» The box will be filled with subgrade and compacted
in layers after mixing the soil at OMC and saturated
after the construction

*» Geotextile — interface of subgrade and base layers

* The test sections will equipped with moisture
sensors and LVDTs

*» Quality control during construction:
» Soil core specimens will be collected

» Variable energy dynamic cone penetration
test (VE-DCP) or traditional DCP

> Light Weight Deflectometer (LWD) tests are
performed




Box Preparation

*» The box is waterproofed at the bottom from the inside and geo membrane
is installed for additional protection.

Load Cell

Geo Membrane




Future Works

“*Need to develop a comprehensive Life Cycle Cost Analysis
(LCCA) for the H2Ri geotextile (cradle-to-gate + End-of-life)

“»Large Scale Testing is to be performed.

&
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