

Application of Geofoam in Infrastructure Application of Geofoam in Thermal Encapsulation of Foundations

Project Leader: Hiramani R. Chimauriya

Team: Clay Caldwell, Nripojyoti Biswas, Gustavo Hernandez Martin

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Director – Center for Infrastructure Renewal

THERMAFOAM LLC

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2024 Meeting

May 23, 2024

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

- Introduction
- Test Methodology
- Previous GBF & GAF Tests
- R-130 Geofoam Around Footing (GAF) Tests
 - GAF-2 in. R-130 Test
 - Indoor Temperature: Control vs GAF
 - Slab Temperature: Control vs GAF
- Results Summary
- **Conclusions**

Introduction

- □ Temperature fluctuations inside the dwellings typically occur from advection, diffusion and radiation at foundation superstructure joints
- □ About 15% of all heat loss in a home is through floors or basements
- Thermal Encapsulation using Geofoam
 - Research Plan
 - Laboratory Testing Setups

The stack effect

XAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

Previous GBF & GAF Tests

- □GAF configurations significant outperform all GBF tests
- □GAF sections >8°C warmer indoor temperature than GBF sections and >10°C warmer than Control section
- ❑Not much difference in performance for thicker insulation → 2 in. GAF most efficient

GAF-2 in. R-130 Test

- Significantly warmer indoor temperature compared to control test (>5°C) warmer
- Increased
 temperature
 observed within the
 slab and
 superstructure –
 reduced heat loss
- □Side walls coldest

Indoor Air Temperature: Control vs GAF

Slab Temperature: Control vs GAF

- □All GAF sections > 10 °C warmer slab temperature than Control
- Lower R-values led to cooler slab temperatures
- □8 in. R-250 sections > 2 °C warmer than 8 in. R-130 section
- □2 in. R-250 sections > 6 °C warmer than 2 in. R-130 section

Results Summary

□GAF-2 in. R-250 section had >4°C warmer slab temperature than GAF-2 in. R-130 section

□GAF-8 in. R-250 section had >2°C warmer slab temperature than GAF-8 in. R-130 section

□GAF- 8 in. R-250 section had >2°C warmer slab temperature than GAF-8 in. R-130 section

Conclusions

- □Better performance of GAF → Heat lost to ambient air controlling factor
- □Thinner insulation with higher R-value performed better than thicker insulation with lower R-value
- GAF-2 in. thick R-250 outperformed GAF-8 in. thick R-130

- Thermal properties and insulation configuration had more influence than thickness of geofoam
- Influence of insulation thickness was higher for lower grade geofoams
- □2 in. thick R-250 in GAF configuration could be an efficient option

Design and Testing of IFI Geosynthetic Products

Project (Leader): Krishneswar Ramineni

Team: Nripojyoti Biswas, Avinash Gonnabathula, and Md Ashrafuzzaman Khan

PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Director – Center for Infrastructure Renewal

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2024 Meeting

May 23, 2024

XAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

- Introduction and Background
- Objectives
- Experimental Program
- Test Results and Trends
- Unpaved Base Layer Design
- Design Charts
- Limitations
- Summary
- Future Work

Introduction and Background

- □ Pavements built over poor subgrade soils → low bearing capacity, distress and construction issues
- □ Geosynthetics → Improve pavement performance → High modulus geogrids can < work on weak subgrades</p>
- Limitations of existing design method (G-H method)
 - Applicable only to geogrids with aperture stability modulus, j below 0.8 m-N/deg (experimental values used in the development are less than this value!)
 - Assumes the initial stress distribution of first cycle as constant
- Need to update the calibration equation and develop design charts

Aperture stability modulus, *j*

Slope vs Aperture stability modulus graph based on G-H equation

XAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

Objectives

The objectives of the current study are:

- Phase 1 Part 1 Objective I : Performing repeated load tests on geosynthetic reinforced base layers built on different weak subgrades (12-inch base sections)
- Phase 1 Part 2 Objective II: Development of various design charts and methods for IFI, Inc Geosynthetic Products based on Phase 1 Part 1 results
- Phase 1 Part 3 Objective III: Perform non-destructive tests on geosynthetic reinforced unpaved sections and develop numerical model to determine the stiffness properties of different pavement layers in the field.
- Phase 2 Part 1 Objective IV: Performing repeated load tests on geogrid reinforced base layers built on different weak subgrades (6-inch base sections)
- Phase 2 Part 2 Objective V: Development of various design charts and coefficients for IFI, Inc Geosynthetics products based on Phase 1 Part 1 and Phase 2 Part 1 results

Large-Scale Repeated Load Testing

Note: All dimensions are in in. (1 in. = 25.4 mm)

Schematic of the large-scale test box

interface of base and subgrade layers

Large-Scale Repeated Load Tests Performed on Geocell/Geocomposites

Test ID	(<i>h</i>)	(CBR _{sg})	Geosynthetic type	Geosynthetic material property
12_1_FG6			Geocomposite (FG6)	<i>j</i> = 0.80 m-N/deg + Non-woven
12_1_GCSP4	_		Geocell (GCSP4)	4 in. height
12_1_GCSP6	_	CBR 1	Geocell (GCSP6)	6 in. height
12_1_BL6_GCSP4	_		Geogrid (BL6) + Geocell (GCSP4)	<i>j</i> = 0.98 m-N/deg + 4 in. height
12_1_BL6_GCSP6	10 in		Geogrid (BL6) + Geocell (GCSP6)	<i>j</i> = 0.98 m-N/deg + 6 in. height
12_3_FG6	I Z IN.		Geocomposite (FG6)	<i>j</i> = 0.80 m-N/deg + Non-woven
12_3_GCSP4			Geocell (GC4)	4 in. height
12_3_GCSP6	_	CBR 3	Geocell (GC6)	6 in. height
12_3_BL6_GCSP4			Geogrid (BL6) + Geocell (GCSP4)	<i>j</i> = 0.98 m-N/deg + 4 in. height
12_3_BL6_GCSP6			Geogrid (BL6) + Geocell (GCSP6)	<i>j</i> = 0.98 m-N/deg + 6 in. height

"Test ID" nomenclature: "Base thickness_CBR of Subgrade_Primary Reinforcement type_Secondary Reinforcement type"

EXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

Large-Scale Repeated Load Testing on Geogrid Reinforcements

Test ID	h	CBR _{sg}	Geosynthetic type	Geosynthetic material property
12_1_UR	12 in.	CBR 1	-	-
12_1_BL5			Geogrid (BL5)	<i>j</i> = 0.80 m-N/deg
12_1_BL6			Geogrid (BL6)	<i>j</i> = 0.98 m-N/deg
12_1_BL7			Geogrid (BL7)	<i>j</i> = 1.50 m-N/deg
12_3_UR		CBR 3	-	-
12_3_BL5			Geogrid (BL5)	<i>j</i> = 0.80 m-N/deg
12_3_BL6			Geogrid (BL6)	<i>j</i> = 0.98 m-N/deg
12_3_BL7			Geogrid (BL7)	<i>j</i> = 1.50 m-N/deg
6_1_UR			-	-
6_1_BL6		CBR 1	Geogrid (BL6)	<i>j</i> = 0.98 m-N/deg
6_1_BL7	6 in.		Geogrid (BL7)	<i>j</i> = 1.50 m-N/deg
6_3_UR		CBR 3	-	-
6_3_BL6			Geogrid (BL6)	<i>j</i> = 0.98 m-N/deg
6_3_BL7			Geogrid (BL7)	<i>j</i> = 1.50 m-N/deg

"Test ID" nomenclature: "Base thickness_CBR of Subgrade_Primary Reinforcement type_Secondary Reinforcement type"

Test Results and Trends

Surface Deformation:

 \Box Permanent deformation $\downarrow \Rightarrow$ subgrade strength, base thickness and geogrid stiffness *j* $\Box CBR_{sa} = 1$; 6 in. base layer test sections failed (3 in. or 75 mm) reaching 150 before loading cycles

Vertical stresses

stresses at of top with subgrade reduced geosynthetic reinforcement key influencing factors: Geogrid stiffness (j), Subgrade strength (CBR_{sa}), r/h ratio

deformation (in.)

Permanent

40 **(isd**)

Vertical stress

Environmental Engineering

5000

Unpaved Base Layer Design – Theory

Stress at interface, $p_i = \frac{1}{\pi (r + h \tan \alpha)^2}$

$$h = \frac{1}{\tan \alpha} \times \left(\sqrt{\frac{P}{\pi r^2 p_i}} - 1 \right) \times r$$

Stress on subgrade should be less than mobilized bearing capacity $m < m^N c$

 $p_i \leq m N_c c_u$

$$h \ge \frac{1}{\tan \alpha} \left(\sqrt{\frac{P}{\pi r^2 \left(\frac{s}{f_s}\right) \left\{ 1 - 0.9 exp \left[-\left(\frac{r}{h}\right)^2 \right] \right\} N_c c_u}} - 1 \right) \times r$$

Subsequent stress distribution angle, α_1

Where, P = vehicular load applied, r = the loading plate of radius, h = the thickness of the base layer, α = stress distribution angle, m = bearing capacity mobilization coefficient, N_c = bearing capacity factor; c_u = undrained cohesion of the subgrade soil (kPa), f_s = factor equal to 75 mm rut depth and s= rut depth (mm)

Unpaved Base Layer Design – Theory

Geogrid-reinforced unpaved roads

- □ Stress distribution angle (α) →
 - improvement with geogrids \rightarrow generate
 - $1/\tan(\alpha)$ vs. $\log_{10}N$ graphs
- **I**ntercept is k and Slope is λ
- Giroud and Han (2004b, 2004a) Method
 - $\rightarrow \alpha$ depends on
 - Ratio of loading plate radius to base layer thickness (r/h)
 - > Types of geosynthetics (j)
 - Number of loading cycles (N)
 - Parameter k is a constant value of 1.1

r = Radius of the plate, h = Base thickness, N = Number of loading cycle, j = Aperture stability modulus

$$\frac{1}{\tan\left(\alpha\right)} = k + \lambda \times \log_{10} N$$

Base Thickness	Subgrade CBR	Reinforcement Type	λ	k	R ²
	1	Unreinforced	-	-	-
	1	BL6	0.342	0.956	0.94
	1	BL7	0.275	0.439	0.96
	3	Unreinforced	0.232	0.928	0.95
6 in.	3	BL6	0.118	0.607	0.99
	3	BL7	0.029	0.413	0.96
12 in.	1	Unreinforced	0.254	1.504	0.99
	1	BL5	0.178	1.244	0.99
	1	BL6	0.119	1.187	0.99
	1	BL7	0.062	0.978	0.99
	3	Unreinforced	0.089	1.010	0.93
	3	BL5	0.077	0.869	0.97
	3	BL6	0.051	0.794	0.98
	3	BL7	0.010	0.588	0.95

TEXAS A&M UNIVERSITY Zachry Department of Civil & Environmental Engineering

Environmental Engineering

r = radius of the plate, h = base thickness, E_1 = Modulus of base, E_2 = Modulus of subgrade, j = aperture stability modulus

Proposed Design Equation

$$h_{lab} = \frac{0.67 \ e^{-0.42 \ j} \ (R_E)^{0.43} + \left(0.07 \ e^{-0.71 \ j}\right) \left(\frac{r}{h}\right)^{1.45} (R_E)^{1.1} \log_{10}(N)}{\{1 + 0.204 \ [R_E - 1]\}} \left\{ \sqrt{\frac{\frac{P}{(\pi r^2)}}{\left(\frac{s}{f_s}\right) \left\{1 - 0.9 \ exp\left[-\left(\frac{r}{h}\right)^2\right]\right\} N_c c_u}} - 1 \right\} \times r$$

G-H method developed a laboratory to field calibration factor based on field tests conducted by Hammitt (1970). The average value of the field calibration factor (f_{cal}) is 0.69

$$h_{field} = h_{lab} \times 0.69$$

$$h_{field} = \frac{0.46 \ e^{-0.42 \ j} \ (R_E)^{0.43} \ + \left(0.048 \ e^{-0.71 \ j}\right) \left(\frac{r}{h}\right)^{1.45} (R_E)^{1.1} \log_{10}(N)}{\{1 + 0.204 \ [R_E - 1]\}} \left\{ \sqrt{\frac{\frac{P}{(\pi r^2)}}{\left(\frac{s}{f_s}\right) \left\{1 - 0.9 \ exp\left[-\left(\frac{r}{h}\right)^2\right]\right\} N_c c_u}} - 1 \right\} \times r$$

Note: Further validation with full-scale field testing on high stiffness geogrids of IFI may yield different calibration factor.

Design Charts

Proposed Design Charts

- □ Design charts shows base thickness for a range of subgrade strength (CBR_{sg}) and for different loading cycles for different geogrids with different *j* properties
- A minimum base thickness of 6 in. is recommended when the design equation in the chart yields thickness lower than 6 in.

Limitations

- □ The current proposed design method's validity is limited to the assumptions made and the testing conditions followed in the research
 - Proposed design methodology validity is constrained to testing variables:
 - ✤ *R_E* values ranging between 2.6 to 6.9
 - CBR values of subgrade soils within the range of 1 and 3
 - Biaxial geogrids with *j* values ranging from 0.8 m-N/deg to 1.5 m-N/deg
 - ➤ Developed equation → for stiff subgrade yields lower design base thickness, < 6 in. → Recommend a minimum thickness of 6 in. for practical considerations and insights from the laboratory data.
 - > An average field calibration factor of 0.69 (from previous design methods) was followed
 - > Future field studies on high strength materials may yield different field calibration factors

Summary

- Current laboratory studies showed the addition of geosynthetics significantly enhances the performance of the unpaved section sections constructed on weak subgrades.
- □G-H equation has been updated to include stiffer geogrids and the proposed method is recommend for geogrids with *j* values ranging from 0.8 m-N/deg to 1.5 m-N/deg
- Design charts were developed for IFI geosynthetic products

Future Works

□Field testing and long-term performance of the high modulus geogrids

□For paved layer coefficients, we recommend large box test on 3-layered system with upper layer simulating asphalt concrete

Performance of pavement sections with H₂Ri geosynthetics

Project Leader: Nripojyoti Biswas

Team members: Avinash Gonnabathula, Krishneswar Ramineni and Gustavo Hernandez Martin PI: Anand J. Puppala Professor | A.P. and Florence Wiley Chair Director – Center for Infrastructure Renewal

NSF IUCRC CICI TAMU SITE NSF IUCRC CICI - IAB Spring 2024 Meeting

May 23, 2024

EXAS A&M UNIVERSIT Zachry Department of Civil & Environmental Engineering

TAMU Site Proprietary

Presentation Outline

- Introduction
- Task Plan
- Life Cycle Analysis
- Field Test Sections
- Large Scale Lab testing
- Summary

Introduction

* Objective

Evaluate the feasibility/efficiency of using H₂Ri geosynthetic for improving drainage and strength of pavement sections built on highplastic expansive soil

- Field Studies indicated efficacy of application
- Laboratory studies
 - **Control Section**
 - **Reinforced Sections**

Reinforced Section

Task Plan

Life Cycle Analysis

Combined Assessment Framework (Das 2018)

Life Cycle Analysis Outline

- Soundary condition is considered as cradle to gate + transportation to site
- Construction machinery costs and impacts are ignored
- The database costs are market costs for the products
- Cost and Impact analysis was done per meter length of road
- Sustainability analysis for environmental impact was performed using OpenLCA
- ReCiPe 2016 Midpoint method was used for calculation

Process Flow

Sustainability Analysis – Test Parameters

 $I_{Rec} = w_{1a} \times E_{E (material production)} + w_{1b} \times E_{E (Transportation)}$ $I_{Env} = w_{2} \times GW_{P}$ $I_{SoEc} = w_{3} \times C$ $I_{SoEc} = w_{3} \times C$ Where, $w_{i} = Weight factors$ $E_{E} = Embodied Energy$ $GW_{P} = Global Warming Potential$ C = Cost of the process

Test ID	Α	В	С
Section ID	TS-1	TS-2	Control
Section Parameters	15 in. RAP + 2 in.	15 in. FB + 2 in.	13 in. FB + 4
	AC + H ₂ Ri gtx	AC + H ₂ Ri gtx	in. AC
Section Length	3.3 m	3.3 m	3.3 m
Section Width	15 ft.	15 ft.	15 ft.

Field Test Sections – FM1807 Venus, Texas

Field Test (In-situ Observations)

- Section A & B shows no surface distresses except for some cracks on shoulders.
- **Section C** has some visible distresses on the outer wheel path.

Section A

Section B

Section C

Falling Weight Deflectometer Tests – February 2024 Drop Weight at each Station (lbf)

FWD Test on Field Test Sections

Deformations measured using 7 sensors (D1-D7)

Pavement and Air Temperature

Falling Weight Deflectometer Tests - Results for sensors (D1-D7) Remaining Rut-Life

Deformation for sensors (D1-D7)

Layer Conditions

Activate Windows Go to Settings to activate Win

Remaining Crack-Life

Schematic of Large Box Setup

Pressure Sensors
 6 ft.
 6 ft.
 time definition

Top View

12 in plate

Moisture Sensors

•

Schematic of Large Box Setup

Box Construction

- The box will be filled with subgrade and compacted in layers after mixing the soil at OMC and saturated after the construction
- $\boldsymbol{\textbf{*}}$ Geotextile \rightarrow interface of subgrade and base layers
- The test sections will equipped with moisture sensors and LVDTs
- Quality control during construction:
 - Soil core specimens will be collected
 - Variable energy dynamic cone penetration test (VE-DCP) or traditional DCP
 - Light Weight Deflectometer (LWD) tests are performed

Box Preparation

The box is waterproofed at the bottom from the inside and geo membrane is installed for additional protection.

Future Works

Need to develop a comprehensive Life Cycle Cost Analysis (LCCA) for the H2Ri geotextile (cradle-to-gate + End-of-life)

Large Scale Testing is to be performed.